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Abstract

Motivated by the scarcity of proper labels in an astrophysical
application, we have developed a novel technique, called
Selfish Evolution, which allows for the detection and cor-
rection of corrupted labels in a weakly supervised fashion.
Unlike methods based on early stopping, we let the model
train on the noisy dataset. Only then do we intervene and
allow the model to overfit to individual samples. The “evo-
lution” of the model during this process reveals patterns
with enough information about the noisiness of the label, as
well as its correct version. We train a secondary network
on these spatiotemporal “evolution cubes” to correct po-
tentially corrupted labels. We incorporate the technique in
a closed-loop fashion, allowing for automatic convergence
towards a mostly clean dataset, without presumptions about
the state of the network in which we intervene. We evaluate
on the main task of the Supernova-hunting dataset but also
demonstrate efficiency on the more standard MNIST dataset.

1. Introduction
Deep learning and computer vision techniques have made
significant inroads in various domains of science, including
astronomy, where they are used to enhance data analysis and
discovery processes [6, 7, 30]. In the field of astronomy, one
prominent application is the detection of celestial phenomena
such as supernovae. By leveraging deep learning models,
astronomers can analyze vast amounts of astronomical data
efficiently and accurately, facilitating the identification of
these explosive events. However, coming up with high-
quality ground truth in the target, real domain, is extremely

*nimaseda@uw.edu

Figure 1. Capturing the evolution of the model output during indi-
vidual overfitting processes results in data volumes encapsulating
a good amount of information about the presence of label noise,
and potentially the noise-free label. Here we depict an exemplar
“evolution cube” for a special approach to the task of supernova de-
tection in which labels are 2D images. The third axis, representing
the evolution steps, is aligned with the (dis)appearing objects in the
above illustration.

more difficult than typical earthly vision applications.
Tackling this issue is of high importance, as the scarcity of



good labels not only impedes the model’s ability to learn and
generalize well but also the missed samples in the training
set are potentially interesting objects. Specifically, a missed
supernova in the training set, apart from contaminating the
training process, may mean a missed, important discovery.

The state-of-the-art in the task of supernova detection is
an image-generating approach called TransiNet—[29]. The
method generates images in which it tries to “paint” the
detections on a blank canvas. In practical scenarios, there
exists a high number of undetected true objects in the ground
truth data, which substantially hinders the training process—
[22, 26–28]. Due to the pixel-wise nature of the method,
each missed object is virtually more than a single missed
object: each pixel belonging to the missed object contributes
to training the network on wrong labels.

In this work, we propose a method for detecting and
recovering these missed discoveries. We cast the problem as
one of label noise, where the noise presents itself as a false
negative: a supernova that has occurred in the past but has
not been discovered yet. We extract subtle information out
of the model dynamics while it is overfitting to each sample
to get hints about the noisiness of the samples.

Label noise has a wide and well-studied body of
literature—[32, 35]. This aspect of machine learning re-
search emphasizes the impact of incorrect labels on model
performance, highlighting the need for robust techniques to
mitigate its effects. Most existing studies often focus on de-
veloping algorithms that can withstand noisy labels, whether
it is by dropping bad labels or weighting good labels—[11]
and [3]. As a result, a new sub-field under the name Learning
with Noisy Labels, LNL, has emerged. The field focuses on
the development of models capable of effectively learning
from datasets contaminated with label noise.

Research in the area of LNL can be broadly categorized
into two main approaches: robust algorithms and noise detec-
tion strategies. Robust algorithms are designed to enhance
the resilience of the learning process without directly ad-
dressing the noise in individual data instances. These meth-
ods incorporate specific mechanisms to ensure that neural
networks can be trained effectively despite the presence of
label noise [10]. Robust algorithms for LNL do not focus on
specific noisy instances but rather aim to design specific mod-
ules or mechanisms that allow networks to be well-trained
despite the presence of label noise. These algorithms often
employ techniques such as regularization, loss correction
[24], and robust optimization to mitigate the effects of noise
on the learning process [37].

On the other hand, noise detection strategies aim at iden-
tifying and mitigating the impact of noisy data, thereby fa-
cilitating the training of more accurate models [5]. Noise
detection methods specifically target the erroneous labels
within the dataset. These methods typically involve two
stages: noise identification and data cleansing or reweight-

ing. By accurately identifying noisy instances, these strate-
gies enable the exclusion or correction of such data, thereby
improving the overall quality of the training dataset [32].

We, on the contrary, focus on the correction of noisy la-
bels after their detection. This is mainly due to the scientific
application behind the idea, where each missed object is a
potential discovery and valuable.

From another perspective, most of the existing methods
focus on typical classification tasks and benchmarks, where
the labels (and their respective noise) are of a categorical
nature. Das and Sanghavi [8], dos Santos and Izbicki [9]
discuss linear regression in the context of Self Distillation,
with a look at label noise. However, they do not cover more
sophisticated models and/or non-categorical outputs. Ponti
et al. [25] focus on tabular data and use training dynamics
of Gradient Boosting Decision Trees. Our application in-
volves image generation (pixel-level regression) and is thus
substantially different. We also test and show results on typi-
cal classification benchmarks and discuss how the original
task is different, calling for a relatively more sophisticated
technique.

A group of methods that rely on the specific state of the
model throughout different stages of training, such as early
stopping—[20]. Arpit et al. [4] suggest that DNNs first learn
simple patterns and subsequently memorize noisy data. Liu
et al. [21] suggest that deep neural networks, when trained
on noisy labels, initially fit the data with clean labels during
an “early learning" phase and later begin to memorize the
data with incorrect labels.

In contrast, we are network-state agnostic. Our method
is, by design, able to learn the overfitting profiles, regardless
of the stage at which we have stopped the training. This
methodological choice is inspired by the fact that, in many
real-world scenarios, one is not training a network from
scratch, but fine-tuning a network already quite “familiar”
with the task at hand. This also allows for the utilization
of the technique in a closed-loop multi-cycle configuration,
allowing the ecosystem to converge to the right answer.

Many studies have exploited the training dynamics of
the models to tackle label noise. Köhler et al. [17] detect
noisy label data by analyzing the variations in predictive
uncertainty distributions of a DNN between clean and noisy
datasets. They use heuristically set rules to interpret the
behavior of the curves, in their no-ground-truth setting. Jia
et al. [13] explore training dynamics by training an LSTM,
emphasizing the detection of label noise. While they high-
light the idea of correction, they do not present a concrete
correction algorithm.

Tanaka et al. [34] addresses the problem in the semi-
supervised learning context, where one knows which data
is labeled or not and only needs to assign pseudo-labels
to unlabeled data. Zhuo et al. [38] address the problem of
noisy labels in the context of domain adaptation, by sample



selection and reweighting.
MentorNet [14], Co-teaching [12], Co-teaching+ [36] all

use dual network architectures in which the two networks
interact with each other during the training. They essentially
focus on the (dis)agreements of the losses of the two net-
works for implicit sample selection. None of these focuses
on the correction of the corrupted labels. Shi et al. [31] study
the application of label noise detection in pediatric heart
transplantation and rare disease detection.

Dataset Cartography [33] uses training dynamics to char-
acterize and diagnose datasets for natural language process-
ing classification tasks. They leverage two main measures
derived from training dynamics - confidence (mean probabil-
ity of true label) and variability (standard deviation of true
label probability) - to plot instances on a 2D map, revealing
regions of easy-to-learn, hard-to-learn, and ambiguous ex-
amples. Their idea is quite close to the underlying concept
of our method. However, our method does not need to cap-
ture the training dynamics of the network from scratch and
starts capturing “evolution history” off a pre-trained state.
Moreover, we do not stop at the detection of the label noise
but emphasize correcting each of the erroneous labels as
valuable elements of our special application.

Our contributions
• We use overfitting dynamics instead of training dynamics.
• We prioritize noisy label correction as a main objective.
• We are network state-agnostic: we do not assume any

network states (early stopping, fully trained, etc.).
• We address label noise in image-like labels—the literature

is almost always classification.

2. Problem formulation
Assume our dataset consists of two parts: a small ’gold
subset’ with clean labels, G, and a larger main subset, D,
with possibly noised labels. For problem formulation, we
proceed with D alone and come back to G for elaboration of
the method in the next section.

LetD = {(xi, ỹi)}Ni=1 denote the dataset, where xi ∈ Rd
is the i-th input feature vector and ỹi ∈ Y is the correspond-
ing noisy label. In this paper, the label space Y is kept as
flexible as possible. ỹi is a sample from the noisy labels,
which may not reflect the true underlying labels y∗i .

Label noise is often represented by P (ỹi | y∗i ): the prob-
ability of observing ỹi given the true label y∗i . A common
model, in typical classification tasks, is the symmetric noise
model where

P (ỹi = y∗i | y∗i ) = 1− η (1)

and

P (ỹi 6= y∗i | y∗i ) =
η

C − 1
∀ỹi (ỹi 6= y∗i ) (2)

with η ∈ [0, 1) representing the noise level andC the number
of classes. To keep the formulation as general as possible,
we follow the same “instance-independent” formulation of
label noise without any further assumptions, even though in
the experiments we showcase the applicability of our method
on datasets with more specific types of label noise too.

Let f(x; θ) be the deep neural network model parameter-
ized by θ, which maps an input x to an output ŷ = f(x; θ).
The loss function, which can be applied to the entire training
dataset or individual mini-batches, is defined as follows:

L(θ) = 1

N

N∑
i=1

`(f(xi; θ), ỹi),

where `(ŷ, ỹ) denotes a chosen loss function that measures
the discrepancy between the predicted label ŷ and the noisy
label ỹ, and N represents the total count of samples in the
dataset or mini-batch.

3. Selfish Evolution: the method
Step 1 – Initial training: The model f(x; θ) is trained on
the main, noisy dataset D for an arbitrary number of epochs:

θ = argmin
θ
L(θ;x, ỹ).

Let us refer to the intermittent state of the network after
the interruption as θ˙

Step 2 – Overfitting and evolution: In this step, we re-
sume training the model off θ˙, but continue training only on
an individual sample to overfit. Mathematically, this can be
expressed as:

θ̂ = argmin
θ
L(θ;xi, ỹi) (3)

which at each epoch (which consists of a single iteration),
can be stated as:

θti = update(θt−1
i ,xi, ỹi), t = 1, . . . , T, (4)

yti = f(xi; θ
t
i), t = 1, . . . , T (5)

where T is the number of overfitting steps (epochs), and
θti represents the model parameters at step t for sample i.
This allows us to capture the “evolution” dynamics of the
model:

Ei = {yti}Tt=1 (6)

In our specific application where the labels are image-like
tensors, Ei are spatiotemporal, 3-D tensors and so are called
“evolution cubes”.

We repeat the same overfitting process of this step for
each of the samples in the subset at hand, indexed by i. For
each sample, we restart off the θ˙ state.

As we will show in the experiments, one can use a more
generalized version of this step, where the overfitting target
is not just a single sample, but a whole mini-batch, or a
combination of them.
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Figure 2. Illustration of various stages of a complete super-epoch. At step 1 (bottom left), the main model is trained on the training subset
D with the original noised labels. In step 2 (top left), individual samples from the gold subset G are used to train the model to generate
evolution cubes. During step 3 (top right), the E2L model is trained from scratch to learn to map evolution cubes of this super-epoch to clean
labels. Finally, at step 4 (dashed blue arrow), the main subset D is passed through the main and E2L models to give a cleaned-up version of
the labels – evolution cubes are generated on the fly.

Figure 3. Image-based redefinition of the task of supernova de-
tection. On the left, two images of the same region of the sky are
passed to the network, and the output is defined as an image of the
same size, containing only the reconstructed desired object [29]

Step 3 – Training of the Evolution-to-Label model: We
train a secondary network g(E ;φ) parameterized by φ on
these evolution cubes to detect and correct corrupted labels:

φ∗ = argmin
φ
`(g(Ei;φ), y∗i ),

where y∗i are the true labels (or high-confidence corrected
labels).

3.1. Closed Loop Correction
The trained secondary network, “Evolution-to-Label”, maps
the cubes, generated based on the current version of the
labels, to a new set of labels–hopefully cleaner. We can
optionally iterate the process in a closed-loop fashion, aiming



for a mostly clean dataset:

ỹ
(k+1)
i = g(Ei;φ(k)),

where k is the iteration index. We use this iteration scheme
in some of the simpler experiments of the next section, where
each cycle is referred to as a “super-epoch”.

4. Experiments

4.1. Supernova detection

Image-based supernova hunting is a pivotal task in astron-
omy. The de-facto way is to collect images of the same
region of the sky, register, and co-add (average) them to get a
template image. Then upon capturing each new image, a sub-
traction is performed, followed by noise removal, detection,
etc.

Sedaghat and Mahabal [29] redefine the task as an image
generation task in which the output contains only the image
of the supernova and nothing else – Fig. 3. ML-wise, it
is close to the task of segmentation, in the sense that we
essentially assign the value zero to pixels corresponding to
unwanted objects. However, it is not just segmentation in the
sense that the pixel values are not typical categorical values,
but rather continuous scalars. It is also not a simple pixel-
level regression task, in the sense that spatial coherence is
important, especially in the presence of a supernova, where
the shape needs to be preserved. The pixel values, at least
in the original implementation of the method, represent the
exact ‘flux’1 values of an ideally subtracted supernova. All
these make it a spatiotemporal regression task. Something
not often considered in typical label-noise research. In the
below experiments, for the sake of comparability, we nor-
malize all the target amplitudes, such that the idea output
becomes a mere localization heat map.

4.1.1. Data
We use data from the Dark Energy Science Collaboration
(DESC) DC2 dataset: a simulated dataset covering a wide
range of astrophysical phenomena with realistic simulations
of the sky, containing billions of galaxies over a large area
of the sky [1, 2]. Our dataset consists of 3712 cutouts of size
256×256 randomly centered around 373 unique supernovae.
The relatively low number of images is, in part, chosen on
purpose to emulate the challenging conditions of lack of
labeled data in real-world astrophysical applications.

We carefully split the dataset to prevent any object from
leaking across subsets, resulting in 3205 train images and
507 gold samples. We also created several label-noised
versions of the ground truth images: 20%, 50%, and 100%
noise.

1A proxy of the apparent brightness of the object.

4.1.2. Initial training
We use the exact same non-probabilistic, encoder-decoder
architecture, as introduced in the original work of Sedaghat
and Mahabal [29], to train the model on our training subset.
We use a solver based on the ADAM optimizer [16] and with
an initial learning rate of 1e− 4.

4.1.3. Evolution
We use a mixed overfitting strategy to induce a race condition
in the model dynamics: the model is pushed to overfit to a
single clean mini-batch for the first half of the process. Then
we switch the overfitting target to the single target label. The
implementation consists of the below steps:
• Initialize the main model with pre-trained weights.
• Pick one sample from the dataset (depending on the stage

we are in)—the ‘Selfish Sample’ hereafter.
• Pick a random batch from the clean dataset—the ‘Support

Batch’ hereafter.
• Initialize an empty cube.
• Continue training the model with the support batch, for a

predefined number of epochs.
• Infer on the Selfish Sample at the end of each epoch and

append the output to the evolution cube.
• Switch to training of the model with the Selfish Sample

for a predefined number of epochs.
• Infer on the Selfish Sample at the end of each epoch and

append the output to the evolution cube.
• Start over – includes reinitialization of the model with the

pre-trained weights.
The last item is particularly important, since we want to

capture comparable dynamics for each of the samples in the
dataset, off of a fixed model state. Also note that throughout
the evolution process, regardless of which half we are in,
there is only a single mini-batch involved. Therefore each
epoch corresponds to a single iteration. When we are using
the support batch, though, we need one extra forward pass
with the Selfish Sample.

We use an ADAM solver [16] with the parameters men-
tioned in Tab. 2. The subtle difference between the two
sections is due to the different behaviors we expect from
the network: during tuning with the support batch, we want
the gradients not to deviate too much from their last state,
with the hope that in case of a noisy label, the model can
lean towards the clean answer. In the second half, though,
we want to allow the model to try to overfit to the ‘Selfish
Sample’—[15, 23].

For this experiment, we set the number of evolution
epochs, Ne, to 60.

4.1.4. Denoising
For denoising, we do not separate the tasks of noise detec-
tion and correction. These steps take place implicitly and
in conjunction with each other when we train a secondary
model that directly maps the evolution cubes to clean labels;



Figure 4. Results of denoising on one exemplar pair of inputs. The top row is the full image crop, while in the second row, we zoom in to
have a clearer view of the target object. “noised target” is the blank target we have trained the primary network on. “denoised target” is the
output of our algorithm, where the correct truth label is recovered.

Figure 5. Exemplar illustration of a down-sampled, unrolled, evolution cube. The first half (top row) is the first half of the evolution, where
the network tries to overfit the support batch. In the second half, overfitting happens towards the single noised target. The race between the
two overfitting schemes reveals subtle information about the clean label, which is exploited by our E2L model later on.

Table 1. Noise correction quantitative results – supernova detection

Variant Init. Clean Labels Clean-Denoised Sim. Clean-Denoised Sim. Hard. Discovered objects
(%) (cosine,%) (%)

Baseline (full) 20.0 68.1 73.0 -
Selfish Evolution (full) 20.0 75.6 82.7 -
Baseline (500) 50.0 8.9 0.0 0
Selfish Evolution (500) 50.0 13.4 8.4 10
Baseline (full) 50.0 9.1 4.7 7
Selfish Evolution (full) 50.0 31.8 50.1 817

Hyperparameter Support Selfish
Learning Rate (α) 1e-4 1e-4

Weight Decay 0.1 0
β1 0.99 0.9
β2 0.999 0.999

Table 2. Solver parameters used for the two parts of the evolution.

we refer to this model as the Evolution-to-Label mapper, or
E2L in short.

Practically speaking, although the input data to E2L is
a sequence in nature, it also matches the input to the main
model – it is only deeper. Therefore, given that the expected

output is exactly of the same type, and to keep homogeneity
in our implementations, we use the same architecture for
E2L – noting that a sequence-based model, like an RNN,
may well replace our implementation.

Moreover, since the number of gold samples, whose cubes
are used for training of E2L, is too small, we use a ‘thinner’
version of TransiNet with only half of the output channels
in each hidden layer to avoid overfitting. We also use other
regular measures such as image flipping (with a 50% chance
in each image dimension) and shifting (with a uniform prob-
ability between 0 and 20 pixels in each image dimension)
during training.

E2L is trained on the evolution cubes obtained from the



Figure 6. (left) Evolution histories of some exemplar noised samples in MNIST training set. (middle) Image-like presentation of the
evolution histories. (right) The input images. Note how the clean label is not immediately distinguishable in the evolution patterns of the
likelihoods—what our E2L model manages to exploit for inferring the clean label.

gold dataset. It is indeed trained on a combination of two
versions of it: cubes from the clean version, and cubes from
a 100% noised version. This way we try to maximize the
types of the evolutions E2L sees, even those that do not need
to be corrected!

4.1.5. Results
We pass the evolution cubes through the E2L network and in-
fer estimates for the corrected labels. We define and compute
multiple evaluation metrics:

• a soft similarity metric: simple cosine distance between
clean and denoised,

• a hard similarity metric: thresholded version of the soft
similarity metric.

• Discovery rate/count: the number of recovered objects
(above threshold).

As stated throughout the paper, our main objective is la-
bel noise correction. Therefore, unlike many studies, we do
not evaluate the performance on a clean validation set, but



directly on the training set. Tab. 1 summarizes the quantita-
tive results. We ran several experiments with various noise
levels and hyperparameters, but only bring the three main
representative ones in the table. ‘Baseline’ is the output of
the primary network, directly trained on the noised dataset—
no correction. The setup designated by ‘500’ is one in which
we set extremely hard conditions by only using the first 500
samples from the training set. In contrast, in the ‘full’ ver-
sion, we used all the training samples. We recovered 817
supernovae that were previously missed!

Figures 4 and 5 depict how the evolution cube and the
corrected label look like in an exemplar case.

4.2. Standard image classification—MNIST
We test our method on MNIST [19], mainly to illustrate
the underlying mechanisms of our proposed method, in a
more manageable application. We prepare three datasets
by modifying the labels of the MNIST dataset: (1) the
clean dataset identical to the original MNIST dataset, (2) the
noised dataset whose 80% of its labels have been randomly
changed, and (3) the noised dataset whose all of the labels
have been randomly altered. We then separate the 60,000
images of the train MNIST dataset into two groups, the first
51,000 being the training set and the last 9,000 images being
the gold set.

We use the train set of the partially noised dataset to train
the primary network, after which we feed each image in the
gold set into the model individually. In other words, we con-
tinue training the trained primary model using only a single
image from the gold set. For each forward pass in a single
iteration, we record the output. At the end of the training, we
obtain an evolution history, i.e., a temporal strip (i.e., cube)
of the likelihood of the prediction over iterations. We then
reset the primary model to its original state before we fed
another image from the gold set. The procedure is repeated
for every image in the set. Thus, we obtain another dataset
consisting of evolution histories corresponding to each im-
age in the gold set. In this step, this procedure is performed
for (1) the gold clean subset, and (2) the gold noisy subset.
Thus, we obtained two sets of evolution histories.

In Figure 6, we can see the class probability correspond-
ing to the noised label increases over the iterations. For
example, the image index 46174 has a clean label of “7” and
a noised label of “5.” Over the iterations, the model predicts
that the image is “5” as we assigned its noised label to be “5”
although it initially predicted that “2” is most likely in the
first iteration.

The gold evolution histories are combined and fed into
the secondary network (E2L). Instead of images and their
corresponding labels, the dataset is the evolution history,
and the target is the clean label of the original image of the
evolution history. The gold clean evolution histories can be
fed into the model directly. However, in gold noisy evolution

histories, the noised labels were corrected before being fed
into the model.

After training the E2L model, we evolved the train subset
of the MNIST train set (i.e., the 51,000 images with partially
noised labels) and obtained their evolution histories. Then,
we fed these train subset evolution histories into the trained
E2L model. The output of this stage would be used to update
the original noised dataset from the first step.

The two models we utilized in this MNIST experiment are
LeNet[19]. This LeNet model consists of 2 CONV-RELU-
POOL layers, 2 fully connected layers, and one softmax.

The results on MNIST are shown in Table 3. We ran
experiments on 50% and 80% noised datasets. The results
consist of 10-super-epoch runs and 1-super-epoch runs in
comparison with baselines. Our baseline is the performance
of the primary model itself. Additionally, we also include
the performance of the Co-teaching algorithm for compar-
ison purposes. Note though that this method is originally
evaluated on a clean validation set. For us to be able to make
a fair comparison, we ran the noisy training set through the
final version of the trained model. Even though Co-teaching
uses a much larger network architecture, we still perform on
par.

5. Discussion and future work
We introduced the novel idea of detecting and correcting
noisy labels based on overfitting dynamics. Apart from its
novelty, the proposed method helped us recover (discover)
more than fifty percent of the missed supernovae in an ex-
emplar dataset, which is beyond significant in the field of
astronomy. We make the source code and the supernova
dataset available to the public upon acceptance of the paper.
Furthermore, the method has the potential for utilization in
domain-adaptation scenarios: a dataset from another domain
with all-blank labels is a perfect fit for the algorithm. Al-
though we were focused on the specific task, we showcased
the efficiency of the method on the rather typical classifica-
tion task. We showed that the mere use of the ‘Selfish’ part
of the evolution suffices in the case of this simple task. We
bring the results of the same experiments on the CIFAR [18]
dataset in the supplementary material.



Table 3. Noise correction quantitative results – MNIST

Variant Init. Noise Levels Clean Percentage Final Noise Levels Learnable Parameters
(%) (%) (%)

Baseline 50.0 91.3 8.7 431,080
Selfish Evolution (1 super-epoch) 50.0 89.7 10.3 431,080
Selfish Evolution (10 super-epochs) 50.0 93.9 6.1 431,080

Baseline 80.0 58.7 41.3 431,080
Selfish Evolution (1 super-epoch) 80.0 63.6 36.4 431,080
Selfish Evolution (10 super-epochs) 80.0 78.8 21.2 431,080
Co-teaching 80.0 78.3 21.7 4,432,266

Figure 7. Exemplar evolution histories of noised data points in the MNIST train set. The first and second columns show that the labels are
corrected only after a few iterations. The third column shows a failed example.
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